最近显示外部眼睛照片显示出糖尿病性视网膜疾病和HBA1C升高的迹象。在本文中,我们评估外部眼睛照片是否包含有关其他系统性医疗状况的信息。我们开发了一个深度学习系统(DLS),该系统将外部眼睛的照片作为输入,并预测多个全身参数,例如与肝脏有关的参数(白蛋白,AST);肾脏(EGFR使用无种族的2021 CKD-EPI肌酐方程,尿液ACR);骨与矿物质(钙);甲状腺(TSH);和血数(HGB,WBC,血小板)。开发利用了49,015例糖尿病患者的151,237张图像,在加利福尼亚州洛杉矶县的11个地点接受糖尿病眼镜筛查。评估重点是9个预先指定的全身参数,并利用了3个验证集(a,b,c),涵盖了28,869名患有和没有糖尿病的患者,在加利福尼亚州洛杉矶县和大亚特兰大地区的3个独立地点进行了眼睛筛查。我们将结合了可用临床人口统计学变量的基线模型(例如年龄,性别,种族/种族,糖尿病年)进行了比较。相对于基线,DLS在检测AST> 36,钙<8.6,egfr <60,HGB <11,血小板<150,ACR> = 300和WBC <4时,在检测AST> 36,钙<8.6,Egfr <60,HGB <60,HGB <60,calcium <8.6,Egfr <60,calcium <8.6和wbc <4时,达到了统计学上的显着性能,并且类似于开发集的人口),其中DLS的AUC超过基线的AUC,增长了5.2-19.4%。在验证集B和C方面,与开发集相比,患者人群的差异很大,DLS的表现优于ACR> = 300的基线,而HGB <11升至7.3-13.2%。我们的发现提供了进一步的证据,表明外部眼睛照片包含跨越多器官系统的全身健康生物标志物。需要进一步的工作来研究这些生物标志物是否以及如何转化为临床影响。
translated by 谷歌翻译
A total of 605 eligible respondents took part in this survey (population size 1630046161 and required sample size 591) with an age range of 18 to 100. A large proportion of the respondents are aged less than 50 (82%) and male (62.15%). The majority of the respondents live in urban areas (60.83%). A total of 61.16% (370/605) of the respondents were willing to accept/take the COVID-19 vaccine. Among the accepted group, only 35.14% showed the willingness to take the COVID-19 vaccine immediately, while 64.86% would delay the vaccination until they are confirmed about the vaccine s efficacy and safety or COVID-19 becomes deadlier in Bangladesh. The regression results showed age, gender, location (urban/rural), level of education, income, perceived risk of being infected with COVID-19 in the future, perceived severity of infection, having previous vaccination experience after age 18, having higher knowledge about COVID-19 and vaccination were significantly associated with the acceptance of COVID-19 vaccines. The research reported a high prevalence of COVID-19 vaccine refusal and hesitancy in Bangladesh.
translated by 谷歌翻译
Neural models that do not rely on pre-training have excelled in the keyphrase generation task with large annotated datasets. Meanwhile, new approaches have incorporated pre-trained language models (PLMs) for their data efficiency. However, there lacks a systematic study of how the two types of approaches compare and how different design choices can affect the performance of PLM-based models. To fill in this knowledge gap and facilitate a more informed use of PLMs for keyphrase extraction and keyphrase generation, we present an in-depth empirical study. Formulating keyphrase extraction as sequence labeling and keyphrase generation as sequence-to-sequence generation, we perform extensive experiments in three domains. After showing that PLMs have competitive high-resource performance and state-of-the-art low-resource performance, we investigate important design choices including in-domain PLMs, PLMs with different pre-training objectives, using PLMs with a parameter budget, and different formulations for present keyphrases. Further results show that (1) in-domain BERT-like PLMs can be used to build strong and data-efficient keyphrase generation models; (2) with a fixed parameter budget, prioritizing model depth over width and allocating more layers in the encoder leads to better encoder-decoder models; and (3) introducing four in-domain PLMs, we achieve a competitive performance in the news domain and the state-of-the-art performance in the scientific domain.
translated by 谷歌翻译
Privacy policies provide individuals with information about their rights and how their personal information is handled. Natural language understanding (NLU) technologies can support individuals and practitioners to understand better privacy practices described in lengthy and complex documents. However, existing efforts that use NLU technologies are limited by processing the language in a way exclusive to a single task focusing on certain privacy practices. To this end, we introduce the Privacy Policy Language Understanding Evaluation (PLUE) benchmark, a multi-task benchmark for evaluating the privacy policy language understanding across various tasks. We also collect a large corpus of privacy policies to enable privacy policy domain-specific language model pre-training. We demonstrate that domain-specific pre-training offers performance improvements across all tasks. We release the benchmark to encourage future research in this domain.
translated by 谷歌翻译
While pre-trained language models (LM) for code have achieved great success in code completion, they generate code conditioned only on the contents within the file, i.e., in-file context, but ignore the rich semantics in other files within the same project, i.e., cross-file context, a critical source of information that is especially useful in modern modular software development. Such overlooking constrains code language models' capacity in code completion, leading to unexpected behaviors such as generating hallucinated class member functions or function calls with unexpected arguments. In this work, we develop a cross-file context finder tool, CCFINDER, that effectively locates and retrieves the most relevant cross-file context. We propose CoCoMIC, a framework that incorporates cross-file context to learn the in-file and cross-file context jointly on top of pretrained code LMs. CoCoMIC successfully improves the existing code LM with a 19.30% relative increase in exact match and a 15.41% relative increase in identifier matching for code completion when the cross-file context is provided.
translated by 谷歌翻译
To ensure proper knowledge representation of the kitchen environment, it is vital for kitchen robots to recognize the states of the food items that are being cooked. Although the domain of object detection and recognition has been extensively studied, the task of object state classification has remained relatively unexplored. The high intra-class similarity of ingredients during different states of cooking makes the task even more challenging. Researchers have proposed adopting Deep Learning based strategies in recent times, however, they are yet to achieve high performance. In this study, we utilized the self-attention mechanism of the Vision Transformer (ViT) architecture for the Cooking State Recognition task. The proposed approach encapsulates the globally salient features from images, while also exploiting the weights learned from a larger dataset. This global attention allows the model to withstand the similarities between samples of different cooking objects, while the employment of transfer learning helps to overcome the lack of inductive bias by utilizing pretrained weights. To improve recognition accuracy, several augmentation techniques have been employed as well. Evaluation of our proposed framework on the `Cooking State Recognition Challenge Dataset' has achieved an accuracy of 94.3%, which significantly outperforms the state-of-the-art.
translated by 谷歌翻译
Network intrusion detection systems (NIDSs) play an important role in computer network security. There are several detection mechanisms where anomaly-based automated detection outperforms others significantly. Amid the sophistication and growing number of attacks, dealing with large amounts of data is a recognized issue in the development of anomaly-based NIDS. However, do current models meet the needs of today's networks in terms of required accuracy and dependability? In this research, we propose a new hybrid model that combines machine learning and deep learning to increase detection rates while securing dependability. Our proposed method ensures efficient pre-processing by combining SMOTE for data balancing and XGBoost for feature selection. We compared our developed method to various machine learning and deep learning algorithms to find a more efficient algorithm to implement in the pipeline. Furthermore, we chose the most effective model for network intrusion based on a set of benchmarked performance analysis criteria. Our method produces excellent results when tested on two datasets, KDDCUP'99 and CIC-MalMem-2022, with an accuracy of 99.99% and 100% for KDDCUP'99 and CIC-MalMem-2022, respectively, and no overfitting or Type-1 and Type-2 issues.
translated by 谷歌翻译
Skeleton-based Motion Capture (MoCap) systems have been widely used in the game and film industry for mimicking complex human actions for a long time. MoCap data has also proved its effectiveness in human activity recognition tasks. However, it is a quite challenging task for smaller datasets. The lack of such data for industrial activities further adds to the difficulties. In this work, we have proposed an ensemble-based machine learning methodology that is targeted to work better on MoCap datasets. The experiments have been performed on the MoCap data given in the Bento Packaging Activity Recognition Challenge 2021. Bento is a Japanese word that resembles lunch-box. Upon processing the raw MoCap data at first, we have achieved an astonishing accuracy of 98% on 10-fold Cross-Validation and 82% on Leave-One-Out-Cross-Validation by using the proposed ensemble model.
translated by 谷歌翻译
大数据和深度学习的结合是一项破坏世界的技术,如果正确使用,可以极大地影响任何目标。随着深度学习技术中大量医疗保健数据集和进步的可用性,系统现在可以很好地预测任何健康问题的未来趋势。从文献调查中,我们发现SVM用于预测心力衰竭的情况,而无需关联客观因素。利用电子健康记录(EHR)中重要历史信息的强度,我们利用长期记忆(LSTM)建立了一个智能和预测的模型,并根据该健康记录预测心力衰竭的未来趋势。因此,这项工作的基本承诺是使用基于患者的电子药用信息的LSTM来预测心脏的失败。我们已经分析了一个数据集,该数据集包含在Faisalabad心脏病学研究所和Faisalabad(巴基斯坦旁遮普邦)的盟军医院收集的299例心力衰竭患者的病历。这些患者由105名女性和194名男性组成,年龄在40岁和95岁之间。该数据集包含13个功能,这些功能报告了负责心力衰竭的临床,身体和生活方式信息。我们发现我们的分析趋势越来越多,这将有助于促进心中预测领域的知识。
translated by 谷歌翻译
数字双技术被认为是现代工业发展的组成部分。随着技术Internet技术(IoT)技术的快速发展以及自动化趋势的增加,虚拟世界与物理世界之间的整合现在可以实现生产实用的数字双胞胎。但是,数字双胞胎的现有定义是不完整的,有时是模棱两可的。在此,我们进行了历史审查,并分析了数字双胞胎的现代通用观点,以创建其新的扩展定义。我们还审查并讨论了在安全至关重要的机器人技术应用中数字双胞胎中现有的工作。特别是,由于环境挑战,数字双胞胎在工业应用中的使用需要自动和远程操作。但是,环境中的不确定性可能需要对机器人进行仔细监控和快速适应,这些机器人需要防止安全和成本效益。我们展示了一个案例研究,以开发针对安全至关重要的机器人臂应用框架,并提出系统性能以显示其优势,并讨论未来的挑战和范围。
translated by 谷歌翻译